用分类算法进行上证指数涨跌预测。
根据今天以前的150个交易日的数据,预测今日股市涨跌。
交叉验证的思想:将数据集D划分为k个大小相似的互斥子集,每个子集都尽可能保持数据分布的一致性,即从D中通过分层抽样来得到。然后,每次用k-1个子集的并集作为训练集,余下的那个子集作为测试集。这样可以获得k组训练/测试集,从而可进行k次训练/测试,最终返回的是这k个测试结果的均值。通常称为”k者交叉验证”,常用取值是10。
1 | # coding:utf-8 |
预测结果
用rbf核函数的预测准确率: [0.6842105263157895, 0.5263157894736842, 0.47368421052631576, 0.47368421052631576, 0.5263157894736842]
用sigmoid核函数的预测准确率: [0.47368421052631576, 0.6842105263157895,
0.5263157894736842, 0.42105263157894735, 0.5789473684210527]
可以看到预测成功率50%左右,跟瞎猜差不多。
本文代码:
https://github.com/zwdnet/MyQuant/blob/master/30
我发文章的四个地方,欢迎大家在朋友圈等地方分享,欢迎点“在看”。
我的个人博客地址:https://zwdnet.github.io
我的知乎文章地址: https://www.zhihu.com/people/zhao-you-min/posts
我的博客园博客地址: https://www.cnblogs.com/zwdnet/
我的微信个人订阅号:赵瑜敏的口腔医学学习园地